POLYFURYL(ARYL)ALKANES AND THEIR DERIVATIVES. 8.* SYNTHESIS OF BENZOFURO[2,3-h]-1-OXAAZULENIUM SALTS. MOLECULAR AND CRYSTAL STRUCTURES OF 2,4-DIMETHYLBENZO[b]FURO[2,3-h]-1-OXAAZULENIUM PERCHLORATE

A. V. Butin, V. T. Abaev, V. E. Zavodnik, and V. G. Kul'nevich

The first representatives of a new heterocyclic system — benzofuro[2,3-h]-1-oxaazulenium salts — were synthesized. Diverse variations of the synthesis of these compounds are proposed. The molecular and crystal structures of 2,4-dimethylbenzo[b]furo[2,3-h]-1-oxaazulenium perchlorate were studied.

In our preceding communication [1] we found that the fragmentation of 5,6-dihydro-2,4-dimethyl-4-(5-methyl-2-furyl)-10-nitro-4H-benzo[b]furo[2,3-h]cyclohepta[b]furan (Ia) under the influence of electron impact leads to the formation of a stable derivative of the benzofuro[2,3-h]-1-oxaazulenium cation. The aim of the present research was to search for preparative methods for the synthesis of compounds with a similar structure.

Krasnodar Polytechnical Institute, Krasnodar 350072. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 627-632, May, 1993. Original article submitted March 11, 1993.

Com- pound	Empirical formula	mp,°C	UV spectrum, λ_{max} , nm (log ϵ)	Yield,
IVa	C ₁₇ H ₁₂ ClNO ₈	232233	223 (4,14); 244 (4,40); 307 (4,63); 373 (4,26)	47
IVD IVc	C17H11Br2ClU6 C17H13ClO6	260261 239240	225 (4,43); 266 (4,31); 317 (4,45); 386 (4,22) 216 (4,39); 245 (4,15); 257 (4,11); 312 (4,47);	38 45
1	ļ	ļ	388 (4,25)	}

TABLE 1. Physicochemical Characteristics of Salts IVa-c

*The yields starting from II.

We ascertained that treatment of the above-mentioned Ia, as well as 2-hydroxy-3-R-4-R¹-phenylbis(5-methyl-2-furyl)methanes IIa-c and 5-nitro-2-(3-oxobutyl)-3-(5-methyl-2-furyl)benzo[b]furan (IIIa), with trityl perchlorate $(Tr^+ClO_4^-)$ leads to the corresponding benzofuro[2,3-h]-1-oxaazulenium salts IVa-c (Scheme 1).

The transformation of tetracyclic Ia to the IVa cation can probably be explained by splitting out of α -methylfuran [3, 4] to give a condensed analog of cycloheptatriene, the aromatization of which by means of cleavage of a hydride ion by trityl perchlorate leads to the final product (Scheme 2); the fact that 5-methyl-2-furyltriphenylmethane was isolated from the reaction mixture serves as a confirmation of this.

The formation of salt IVa from benzofuran IIIa most likely proceeds through successive steps involving the intramolecular cyclization of the carbonyl group at the β position of the furan ring, acid-catalyzed splitting out of triphenylmethanol, which leads to the cycloheptatriene, and aromatization of the latter to the corresponding tropylium ion (Scheme 3).

Scheme 3

The conversion of 2-hydroxyphenyldifurylmethanes IIa-c under the influence of trityl perchlorate to the corresponding benzofurooxaazulenium salts IVa-c is unexpected, since treatment of 2-hydroxytriphenylmethanol with trityl perchlorate leads to 9-phenylxanthylium perchlorate [5, 6], the formation of which is due to nucleophilic attack of the oxygen atom of the hydroxy group on the ortho position of the unsubstituted benzene ring. In the case of 2-hydroxyphenyldifurylmethanes II, however, the rearrangement of the initially formed 2-hydroxyphenyldifuryl carbonium ions indicated in Scheme 4 evidently occurs.

Scheme 4

The IR spectra of salts IVa-c contain an intense b and at 1070 cm^{-1} , which corresponds to the perchlorate anion. The electronic absorption spectra of IVa-c have a complex structure with four intense bands at 216-386 nm (Table 1), while their PMR spectra (Table 2) contain signals of 5-H and 6-H protons with a characteristic spin-spin coupling constant (SSCC) of 11 Hz.

To establish the peculiarities of the structure of the new heterocyclic system IV we carried out an x-ray diffraction study of a single crystal of salt IVc. The coordinates of the atoms and the bond lengths and bond angles are presented in Tables 3-5. A projection of a three-dimensional model of IVc is presented in Fig. 1. We found that all of the atoms of the benzofuro[2,3-h]-1-oxaazulenium cation except for the hydrogen atoms of the methyl groups lie in a plane, while the lengths of most of the bonds are equalized and range from 1.39 to 1.40 Å; this constitutes evidence for significant delocalization of the charge in the aromatic system obtained.

EXPERIMENTAL

The PMR spectra were recorded with a Tesla BS-467 spectrometer (60 MHz) with hexamethyldisiloxane (HMDS) as the internal standard. The IR spectra of suspensions in mineral oil were recorded with a Specord M-80 spectrometer.

The results of elementary analysis of the compounds obtained were in agreement with the calculated values.

X-Ray Diffraction Analysis of IVc. Prismatic crystals of 2,4-dimethylbenzo[b]furo[2,3-h]-1-oxaazulenium perchlorate (IVc) were grown from acetonitrile and had the following unit cell parameters: a = 6.693(2), b = 12.863(4), c = 20.680(6) Å, V = 1780.4(1.6) Å³, space group P mcn, and Z = 4. The unit cell parameters and the intensities of 1174 independent

Com- pound	Chemical shifts, δ , ppm									
	2-CH3, S	4-CH3, S	3-Н, S	5-н, d	6-H, đ	8-H	9-H	11-Н	SSCC, J, Hz	
IVa	2,88	2,63	7,13	8,45	8,67	7,70d	8,50d	9,33d	$J_{5,6} = 11,5; J_{8,9} = 9,5;$ $J_{9,11} = 2,0$	
IVb IVc	2,87 2,83	2,58 2,58	7,07 7,05	8,37 8,28	8,62 8,52	7,18.	7,80dd 7,80m*	8,48d	$J_{5,6} = 11,0; J_{9,11} = 2,0$ $J_{5,6} = 11,0$	

TABLE 2. PMR Spectra of Salts IVa-c in CF₃COOD

*A multiplet formed by three protons including 10-H.

TABLE 3. Coordinates of the Nonhydrogen Atoms (Å \cdot 10⁴) and Temperature Factors (Å 2 \cdot 10³) of the IVc Molecule

Atom	x	у	z	и	Atom	x	у	z	и
Cl	2500	4207(1)	2435(1)	28(1)	C(7)	2500	5889(3)	5182(2)	19(1)
0(1)	2500	4923(2)	6109(1)	26(1)	C(8)	2500	4800(3)	5007(2)	21(1)
0(2)	2500	6622(2)	4148(1)	23(1)	C(9)	2500	4259(3)	5589(2)	24(1)
0 ₍₃₎	2500	5296(2)	2287(1)	54(1)	C(10)	2500	3182(3)	5629(2)	29(1)
0(4)	4225(3)	3965(2)	2805(1)	62(1)	C(11)	2500	2659(3)	5043(2)	28(1)
0(5)	2500	3623(2)	1848(1)	50(1)	C(12)	2500	3189(3)	4452(2)	29(1)
Ν	2500	795(3)	3822(2)	46(1)	C(13)	2500	4251 (3)	4415(2)	24(1)
C ₍₁₎	2500	5917(3)	5864(2)	22(1)	C(14)	2500	8338(3)	4324(2)	27(1)
C ₍₂₎	2500	6741(3)	6293(2)	26(1)	C(15)	2500	7598(3)	3869(2)	25(1)
C ₍₃₎	2500	7792(3)	6148(2)	25(1)	C(16)	2500	9489(3)	5577 (2)	35(1)
C ₍₄₎	2500	8313(3)	5554(2)	25(1)	C(17)	2500	7614(3)	3153(2)	36(1)
C ₍₅₎	2500	7834(3)	4941 (2)	22(1)	C(18)	2500	915(3)	3276(2)	33(1)
C ₍₆₎	-2500	6764(3)	4799(2)	21(1)	C(19)	2500	1057(3)	2580(2)	42(1)
	1	l							

TABLE 4. Bond Lengths in the IVc Molecule

Bond	ιÅ	Bond	1, Å	Bond	1, Å	Bond	1, Å
$CI - O_{(3)}$ $CI - O_{(5)}$ $O_{(1)} - C_{(1)}$ $O_{(2)} - C_{(6)}$ $N - C_{(18)}$ $C_{(1)} - C_{(17)}$ $C_{(3)} - C_{(4)}$	1,433(3) 1,428(3) 1,375(4) 1,358(4) 1,139(6) 1,411(5) 1,399(5)	$C_{(4)}-C_{(16)}$ $C_{(5)}-C_{(14)}$ $C_{(7)}-C_{(8)}$ $C_{(8)}-C_{(13)}$ $C_{(10)}-C_{(11)}$ $C_{(12)}-C_{(13)}$ $C_{(12)}-C_{(12)}$	1,513(5) 1,430(5) 1,446(5) 1,412(5) 1,387(5) 1,368(5) 1,481(5)	$Cl-O_{(4)} Cl-O_{(4A)} O_{(1)}-C_{(9)} O_{(2)}-C_{(15)} C_{(1)}-C_{(2)} C_{(2)}-C_{(3)} C_{(4)}-C_{(5)} $	1,420(2) 1,420(2) 1,374(4) 1,382(4) 1,382(5) 1,385(5) 1,411(5)	$C_{(5)}-C_{(6)} \\ C_{(6)}-C_{(7)} \\ C_{(8)}-C_{(9)} \\ C_{(9)}-C_{(10)} \\ C_{(11)}-C_{(12)} \\ C_{(14)}-C_{(15)} \\ C_{(20)}-C_{(20)} $	1,406(5) 1,377(5) 1,391(5) 1,387(5) 1,400(5) 1,339(5) 1,451(6)
	,	-(13) -(17)	-,		-,,(0)	0(10) 0(13)	1,401(0)

reflections with $I > 3\sigma(I)$ were obtained at 150 K with an Enraf-Nonius CAD4 automatic diffractometer without a monochromator (Mo K_{α} emission, $\theta/2\theta$ scanning up to $2\theta_{max} = 50^{\circ}$). The structure was decoded by the direct method by means of the set of SHELXTL programs [7] and was refined within the anisotropic (isotropic for the hydrogen atoms) approximation up to divergence factors R = 0.036 and $R_w = 0.040$.*

The starting compounds were obtained by the methods described in [1, 8].

2,4-Dimethylbenzo[b]furo[2,3-h]-1-oxaazulenium Perchlorate (IVc). A mixture of 0.54 g (0.002 mole) of 2-hydroxyphenylbis(5-methyl-2-furyl)methane (IIc) and 0.68 g (0.002 mole) of trityl perchlorate in 5 ml of methylene chloride was maintained at room temperature for 3 h, after which the mixture was diluted with 15 ml of ethyl acetate, and the resulting mixture was cooled in a refrigerator. The precipitated IVc was removed by filtration, washed with ether, and recrystallized from acetonitrile. The yield was 3.12 g.

^{*}The coordinates of the hydrogen atoms can be obtained from the authors.

			and the second sec		
Angle ω, deg		Angle	ω, deg	Angle	ω, deg
O ₍₃₎ ClO ₍₄₎	109,2(1)	O(1)C(9)C(8)	111,5(3)	$C_{(4)}C_{(5)}C_{(14)}$	127,1(3)
$O_{(4)}CIO_{(5)}$ $O_{(4)}CIO_{(4A)}$	108,8(2)	$C_{(8)}C_{(9)}C_{(10)}$ $C_{(10)}C_{(11)}C_{(12)}$	123,5(3) 121,8(3)	$C_{(2)}C_{(6)}C_{(5)}$ $C_{(5)}C_{(6)}C_{(7)}$	109,7(3) 132,8(3)
$C_{(1)}O_{(1)}C_{(9)} \\ O_{(1)}C_{(1)}C_{(2)}$	106,9(3) 118,5(3)	$C_{(8)}C_{(13)}C_{(12)}$ $O_{(2)}C_{(15)}C_{(14)}$	116,9(3) 110,6(3)	$\begin{array}{c} C_{(1)}C_{(7)}C_{(8)} \\ C_{(7)}C_{(8)}C_{(9)} \end{array}$	106,0(3) 105,6(3)
$C_{(2)}C_{(1)}C_{(7)}$ $C_{(2)}C_{(3)}C_{(4)}$	131,4(3) 131,2(3)	C(14)C(15)C(17) O(3)ClO(5)	133,9(3) 109,4(2)	$C_{(9)}C_{(8)}C_{(13)}$ $O_{(1)}C_{(9)}C_{(10)}$	119,9(3) 125,0(3)
$C_{(3)}C_{(4)}C_{(16)}$ $C_{(4)}C_{(5)}C_{(6)}$	116,8(3) 127,9(3)	O(3)ClO(4A) O(5)ClO(4A)	109,2(1) 110,1(1)	$C_{(9)}C_{(10)}C_{(11)}$ $C_{(11)}C_{(12)}C_{(13)}$	115,6(3) 122,3(3)
$C_{(6)}C_{(5)}C_{(14)}$ $O_{(2)}C_{(6)}C_{(7)}$	105,0(3) 117,4(3)	$C_{(6)}O_{(2)}C_{(15)}$ $O_{(1)}C_{(1)}C_{(7)}$	107,0(3) 110,1(3)	$C_{(5)}C_{(14)}C_{(15)}$ $O_{(2)}C_{(15)}C_{(17)}$	107,7(3) 115,5(3)
$C_{(1)}C_{(7)}C_{(6)}$ $C_{(6)}C_{(7)}C_{(8)}$	123,7(3) 130.3(3)	$C_{(1)}C_{(2)}C_{(3)}$ $C_{(3)}C_{(4)}C_{(5)}$	127,5(3) 125,4(3)	- NC(18)C(19)	179,4(4)
$C_{(7)}C_{(8)}C_{(13)}$	134,5(3)	C(5)C(4)C(16)	117,7(3)		

TABLE 5. Bond Angles in the IVc Molecule

Fig. 1. Projection of a three-dimensional model of 2,4-di-methylbenzo[b]furo[2,3-h]-1-oxaazulenium perchlorate.

Salts IVa, b, respectively, were similarly obtained from IIa, b, while salt IVa was also obtained from IIIa (in 68% yield) and form Ia (in 14% yield).

REFERENCES

- 1. A. V. Butin, G. D. Krapivin, V. E. Zavodnik, and V. G. Kul'nevich, Khim. Geterotsikl. Soedin., No. 5, 616 (1993).
- 2. A. V. Butin, V. T. Abaev, and V. G. Kul'nevich, Khim. Geterotsikl. Soedin., No. 8, 1142 (1992).
- 3. A. V. Butin, V. G. Kul'nevich, V. T. Abaev, and O. Yu. Okhlobystin, *Khim. Geterotsikl. Soedin.*, No. 8, 1141 (1992).
- 4. E. B. Usova, G. D. Krapivin, and V. G. Kul'nevich, Khim. Geterotsikl. Soedin., No. 9, 1289 (1992).
- 5. R. Elderfield (ed.), Heterocyclic Compounds [Russian translation], Vol. 2, Izd. Inostr. Lit., Moscow (1954), p. 340.
- 6. S. M. Luk'yanov, L. N. Étmetchenko, and G. N. Dorofenko, Zh. Org. Khim., 14, 399 (1978).
- 7. G. M. Sheldrick, Computational Crystallography, Oxford University Press, New York-Oxford (1982), p. 506.
- 8. A. V. Butin, V. E. Zavodnik, and V. G. Kul'nevich, Khim. Geterotsikl. Soedin., No. 7, 997 (1992).